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A C E R T A I N  M O D I F I C A T I O N  O F  T H E  F O U R I E R  

H Y P O T H E S I S  

I. B. Krasnyuk and B. L. Revzin UDC 536.24 

We construct impulse solutions for the heat transfer problems. 

The majority of works concerned with the study of the processes of heat transfer are based on the classical 

heat conduction equation, which in turn results from the Fourier hypothesis: 

Q = - k 0-T-T (1) 
ox" 

In such a case it is often emphasized that in solving Eq. (1) the velocity of propagation of disturbances is 

assumed to be infinite. This permits one to obtain correct results in many cases, but not always. 

Recently, time publications appeared suggesting that relation (1) be modified on the basis of the Maxwell 

hypothesis [1, 2]: 

Q I t+r = - k 0-~-xT t" (2) 

We introduce relation (2) to take into account the finite velocity of propagation of thermal disturbances. 

In fact, let us consider the equation 

OT OO (3) 
pco - ~  = Ox 

and take the zero approximation of Eq. (2) at rather small values of v, T > 0, i.e., 

= O T  (4) Q+T ~ - / ~ - - .  
Ot Ox 

Then, relations (3) and (4) yield [1, 2] 

02T k 02T OT + T ~  + 

ot ot 2 pc 0 0 x  2 
- - - 0  (5) 

and thus we determine the velocity of propagation of the temperature front V-- d x / d t  = k/7:pCv [3 ]. 

We note that on the same grounds of accounting for the finite velocity of propagation of heat, it is necessary 

to consider the relation (equation) 

0 - - T - T + r - - - ~ - -  2k = 0 ,  
Ot Ot 2 Ox 

where 2 is a certain characteristic of the medium. When ;l = k/(Tpcv), Eqs. (5) and (6) coincide. 

(6) 
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Within the framework of relation (2) this means that besides the delay �9 a certain parameter 6 E R should 

exist such that Vp -- 6 /T ,  where Vp is the velocity of propagation of disturbances of the heat flux. 

Let us consider the following modification of hypothesis (2): 

OT Q(x+~, t+r)=-k-~x(X, t ) ,  (7) 

where 6, T > 0 are sufficiently small numbers. The physical meaning of this equality can be represented as follows: 

we perform the shift x -~ x - 6 and write down Eq. (7) in a zero approximation: 

Q ( x ,  t + 3) = - k O-T-T ( x ,  t) + k6 - -  02T + 0 (t~ 2) (8) 
Ox Ox 2 " 

Consequently, in the time z the heat flux responds not only to the change in the temperature gradient, but also to 

the "diffusion of the temperature front." Thus, at 6 -- 0 it follows from Eq. (8) that the existence of the temperature 

T at a certain time t at the point x does not as yet mean the existence of the flux Q, which appears only at the 

instant of time t + r. However, since implicitly we assume the presence of the heat flux, then in the time ~: it will 

be displaced from the point (x, t) to the point (x + 6, t '), i.e., it is possible to consider the relations 

o r  o_._Q (x t) 
pc#-~-f ( x ,  t ) = -  ox ' ' 

(9) 

OT 
Q (x + c3 , t + T) = - k-ff-;x (X,  t) , 

(10) 

which later will be replaced by other equations according to the following scheme. We expand the function Q into 

a Taylor series accurate to values of the first order of smallness: 

OQ OQ - k OT (11) 
Q + ~ --ff + ~ 0-7 = o__7. 

/ X  

Since 6 = vr, we seek the heat flux component in the form: Q(.) = Q(t - x / v ) ,  i.e., the quantity Q has the form of 

a stationary wave travelling with the velocity d x / d t  = V, and relation (11) assumes the form 

OT (12) 
( x ,  t )  = - k ~ (x, t). 

We note that equality (12) does not contradict hypothesis (7), since the family of the self-similar functions Q, 

determined above, is invariant with respect to the shift (x, t) --, (x, d, t + r). In fact, 

Q ( x + 6 ,  t + r )  = t + r  

Then, Eq. (12) yields the relation 

V = t - ~  
def 
= Q (x ,  t) .  

OT 
Q. (x + ~ , t + ~) = - k -~x ( x ,  t ) .  

which coincides with equality (7) 
Thus, Eq. (10) is invariant with respect to the indicated shift if and only if the heat flux satisfies the 

equation 

0Q = (13) ~ + vp-g-s o Ot 
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but this is equivalent to claiming that we can consider the system of equations 

Q =  _ k  OT 
T x '  

OT oQ OQ oQ 
pco-  + Wx = O, -2{+ Vp S-s = O. 

(14) 

We note that Eqs. (9) and (10) yield the system (14), but, generally speaking, the inverse is incorrect, 

i.e., we have "lost" a portion of the solutions. However, the solutions that remain (simple waves) have rather 

interesting properties. 

It can also be trivially verified that the function -Q(t + x / v )  leaves the following equation invariant with 
respect to the shift: 

Q (x - d t + v) = - k OT , ( x ,  t ) .  (15) 

Then, system (9), (10), (15) is equivalent to Eqs. (14), where the parameter Vp = -V,  i.e., for fluxes moving with 

the velocity V in both the forward and reverse directions we have 
/% A 

0-5-+ =o, 
(16) 

- -  h 

oQ = o 
Ot 

where Q and Q are the direct and reverse waves. To obtain such solutions, it is sufficient to note that the last 

equation of system (14) yields the wave equation 

~ v~_ 02Q (17) 
Ot 2 p--~x 2 = O, 

which is verified by direct differentiation. As is known, solutions of Eq. (17) have the form Q = Q + Q and thus 
include the solutions of Eqs. (16). 

Consequently, we may assume that the system of equations (9), (10), and (14) is equivalent to the system 

OT OQ 
pc# = 0 , 

ot Ox 

~ v~. 02Q OT (18) 
Ot 2 - p~x2  = 0 ,  Q = - k - - ,  Ox 

involving the wave equation. This is basically the main result of the present work. 

The solution of the wave equation can be reduced to the solution of a well-known problem [3] in the 
following way. Denoting OQ/ot  = J and OQ/Ox = - u ,  we obtain the system 

OJ V~p OU OU OJ , R + 
0-7 + ~ - x = 0 ,  - ~ - + - ~ x = 0 ,  (x,  t) E [0, / ] •  , / > 0 ,  (19) 

for which (by analogy with the problem of [3 ]) we consider the boundary conditions 

J [ x = 0 = 0 ;  J = O ( / f ) l x = l .  

where �9 : R 1 --, R 1 is a certain function, and the initial conditions 

J(x,O)=So(X); V(x ,O)=y  o(x). 

(20) 

(21) 
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In system (19) we perform the substitution of variables: J = 0.5(u + v) and U = z / 2 ( u  - v), x = Is, t = ( l /Vp)z ,  

where z 2 -- 1 / Vp 2. As a result we obtain [3 ] 

0 u +  0 u = 0 ,  0v_ Ov=0, (s,7) E [0, 1]xR +, (22) 
gi as gi as 

with the boundary conditions u -- - v l s=O, ( -  v) = f (u)  I s = 1, where f is a function assigned implicitly by the relation 

and the initial conditions 

U(S, 0) = ~01 (S), V(S, 0) = ~0 2(8), 

where 

~~ (S) = Jo (ls) + ( -  1)i-1 z U o ( l s ) ,  i = l ,  2 .  

Since the functions u and v do not change their values along the characteristics d s / d t  = ---1, respectively, the 

solution can be represented in the form 

u ( s , 7 ) = y ( 7 - s ) ,  v ( s ,  t ) = y ( 7 + s ) ,  

where, by virtue of the boundary conditions, y(t) is the solution of the difference equation 

9 ( 7 +  2 ) = f ( y ( 7 ) ) ,  7 ~  [ -  1,  + = ) ,  

with the initial function [3] 

u o ( t ) ,  7 e  [ -  1, 0) ,  
Y (7) l t~  [-1,1) = 

v 0 ( 7 ) ,  7 ~  I0, 1). 

Thus, the initial problem has been reduced to a difference equation, which can be solved by the method of iterations. 

It is known [3 ] that the solutions of such a problem for t -:- ~o tend to piecewise-constant periodic functions that 

assume values from P+, where P+ is the set of attracting motionless points of the mapping f, i.e., 

p+ def { 
= = s ( t )  \ Is ( t )  I < 1 }. 

Next, using the derivative 

OT P+ 
t--,~lim ~ (x , t) - pcgV p- - tan O , x E ( 0 ,  /) ,  

where 0 is the angle of inclination of the graph T at rather large times and a fixed value of x ~ (0, /), it is not 

difficult to find that 

P+ 2 m /  2mp+ l 
T - T O = ~'~(oT/ot) tan 0 = - - -  = - - .  (23) 

Here T is a certain fixed level, and the sign = means an approximate order of the magnitude, since the amplitude 
is determined accurately by the set ~: of discontinuity points of the limiting solution (Fig. 1). Figure 1 shows the 
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Fig. 1. Limiting distribution for the wave equation. 

Fig. 2. Form of the function "generating" relaxational vibrations. 

T 

- - - f  o 

t >>1 
Fig. 3. Limiting distribution for the first-order system. 

case where the mapping has the form given in Fig. 2, where f(J) < J, J is a certain open bounded interval; a0, a2 

E P+, al is the repelling motionless point o f f ,  whose inverse images, under the action of iterations, determine the 

set of discontinuity points r [3 ]. 

Thus,  pcvaT/Ot-~ P+/Vp for t ~ oo uniformly for almost all x E (0, /), where P+ = {a0, a2}; the period 

~(OT/Ot) = 2 P+l/(pcvV2). For example, if the inverse image of ao, i.e., the point al in Fig. 2, divides the interval 

J in half, then to determine the amplitude it is necessary in equality (23) to take f~(.) /2 instead of Q(OT/Ot) = 
P+/(pcvVp2), i.e., T - TO = (a2/Vp)2(1/2)(l/Vp). The general case is similar. 

In conclusion we note that in [4 ] heat conduction equations are considered for 6 = 0 and ~ > 0 with the 

boundary conditions 

Q = Oix=O; Q=fg(~)ix=l, 
where, for example [5 ], 

/,. def b 

= q ( T ) - ~ e ( r ) z  ~, ~>_4. 

Here E(T) is a function that characterizes the absorbing properties of the medium, q(. ) is a certain incident flux; 

in the simplest case Q = q(T). 
We may assume that in the case of intense external effects we have the boundary condition (given only as 

an illustration) 

OQ OT 
- q (~ )  -zTI Ot x = l  " t i l l  
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which follows from condition (20) and the first relation of system (17). In [4 ] the temperature distributions shown 

in Fig. 3 are obtained. A comparison of Figs. 1 and 3 shows that in the case of rather strong external effects the 

periodic piecewise-constant heat wave tends toward "inverting." 

N O T A T I O N  

Q, heat flux; T, temperature; k, thermal conductivity; x, spatial coordinate; t, time; 3, time of heat flux 

relaxation; e, Stefan-Boltzmann constant. 
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